A low order nonconforming anisotropic finite element approximation to parabolic problem

نویسندگان

  • Dongyang Shi
  • Wei Gong
چکیده

Ω fvdxdy. There have been a lot of work related to the finite element approximation to problem (1) in the framework of both semidiscrete and fully discrete schemes. For example, some superconvergence properties of conforming linear finite element (FE) were obtained by V. Thomeé with necessary help of Ritz projection and Lin Qun with a new analysis form, i.e., an analysis for the “short side” in the FE-right triangle plus the sharp integral estimates of the “hypotenuse”, rather than using the Ritz projection. The superconvergences of semidiscrete and fully discrete schemes of biquadratic element were studied by Lin and Pan, and X. Q. Liu with the same

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A class of Crouzeix-Raviart type nonconforming finite element methods for parabolic variational inequality problem with moving grid on anisotropic meshes

A class of Crouzeix-Raviart type nonconforming finite element methods are proposed for the parabolic variational inequality problem with moving grid on anisotropic meshes. By using some novel approaches and techniques, the same optimal error estimates are obtained as the traditional ones. It is shown that the classical regularity condition or quasi-uniform assumption on meshes is not necessary ...

متن کامل

On the Implementation of Mixed Methods as Nonconforming Methods for Second-order Elliptic Problems

In this paper we show that mixed finite element methods for a fairly general second-order elliptic problem with variable coefficients can be given a nonmixed formulation. (Lower-order terms are treated, so our results apply also to parabolic equations.) We define an approximation method by incorporating some projection operators within a standard Galerkin method, which we call a projection fini...

متن کامل

Low Order Crouzeix-raviart Type Nonconforming Finite Element Methods for Approximating Maxwell’s Equations

The aim of this paper is to study the convergence analysis of three low order Crouzeix-Raviart type nonconforming rectangular finite elements to Maxwell’s equations, on a mixed finite element scheme and a finite element scheme, respectively. The error estimates are obtained for one of above elements with regular meshes and the other two under anisotropic meshes, which are as same as those in th...

متن کامل

Low Order Nonconforming Expanded Characteristic- Mixed Finite Element Method for the Convection- Diffusion Problem

A low order nonconforming finite element method is proposed for the convection-diffusion equations with the expanded characteristic-mixed finite element scheme. The method is a combination of characteristic approximation to handle the convection part in time and a expanded nonconforming mixed finite element spatial approximation to deal with the diffusion part. In the process, the interpolation...

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Systems Science & Complexity

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2009